CHROMBIO 4955

Note

High-performance liquid chromatographic assay for a novel psychotropic drug (CI-943) in cynomolgus monkey plasma

CLAUDIA SANDERS KRCMARIK*, JEFFREY J MICELI and LAWRENCE A PACHLA

Pharmacokinetics/Drug Metabolism Department, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, MI 48105 (USA)

(First received February 2nd, 1989, revised manuscript received July 12th, 1989)

8-Ethyl-7,8-dihydro-1,3,5-trimethyl-1H-imidazo [1,2-c]pyrazolo [3,4-e]pyrimidine (CI-943, I, Fig. 1) is a potential agent for the treatment of psychotic disorders. I has been shown to produce antipsychotic-like effects in behavioral tests in rodents and monkeys [1-3]. Preclinical results in rats and monkeys suggest that I is not a brain dopamine antagonist and should have reduced hability in causing extrapyramidal syndrome at effective dose levels [1,2]. The molecular mechanism of action has not been elucidated [4]. Studies in experimental animals demonstrate that I accelerates brain dopamine turnover, al-

Fig 1 Structures of I, II (internal standard) and III

0378-4347/89/\$03 50 © 1989 Elsevier Science Publishers B V

though it does not share affinity for many neurotransmitter receptors as do traditional antipsychotic agents. Thus, I may offer a novel mechanism of action involving indirect alterations in dopamine transmission [2,5]

This paper describes a sensitive method for the determination of I in cynomolgus monkey plasma by a solid-liquid extraction process and high-performance liquid chromatography (HPLC) with ultraviolet detection. One of our goals in developing this method was to chromatographically separate I from a closely eluting metabolite (metabolite 9, III, Fig. 1) of similar structure III has been identified as metabolite 9 in monkeys dosed with I The minimum detectable limit is $0.05 \,\mu\text{g/ml}$ at a signal-to-noise ratio of 4, requiring a sample volume of 100 μ l.

EXPERIMENTAL

Reagents and materials

I (Lot W), the internal standard (PD 118979, II) (Lot R) and metabolite 9 (PD 111788, III) (Lot P) were synthesized in house at the Parke-Davis Pharmaceutical Research Division, Warner-Lambert (Ann Arbor, MI, U.S A.) (Fig. 1). Triethylamine (AR) was obtained from Aldrich (Milwaukee, WI, U.S.A.) 1-Dodecanesulfonate sodium was obtained from Regis (Morton Grove, IL, U.S.A.) and 1-heptanesulfonic acid sodium salt was purchased from Eastman Kodak (Rochester, NY, U S.A.). Sodium acetate (AR), orthophosphoric acid (AR), acetonitrile and methanol (Chrom-AR) were all obtained from Mallinckrodt (Paris, KY, U.S.A.). Solid-phase cartridges [Bond-Elut C_{18} cartridge, 3 ml (200 mg) capacity] were purchased from Analytichem International (Harbor City, CA, U.S.A.). Water, which was of HPLC grade, and sulfuric acid (AR) were obtained from Fisher Scientific (Fairlawn, NJ, U S A) Heparinized cynomolgus monkey plasma from Lampire Biologicals (Pipersville, PA, U.S.A.) was used.

Nine calibration standards were prepared daily over a concentration range of 0 05–3 0 μ g/ml using a plasma sample size of 100 μ l The internal standard was utilized at a concentration of 1.0 μ g/ml and a volume of 100 μ l per sample.

Cynomolgus monkey plasma quality control standards of 0.25, 1.5, and 2.5 μ g/ml I were prepared by diluting aliquots of a 100 μ g/ml I solution with drug-free monkey plasma to a final volume of 10 ml. Aliquots of quality control standards were stored frozen at -20 °C.

Chromatography

A Waters (Milford, MA, U.S.A.) Model M-45 solvent delivery system, a Model 002027 TCM column heater and a Model 481 Lambda-Max LC spectrophotometer with ultraviolet detection at 315 nm were used in conjunction with a Hitachi (Tokyo, Japan) Model 655A-40 autosampler and a Hewlett-Packard (Avondale, PA, U.S.A.) Model 3390A computing integrator. Mobile phase was pumped at 0.7 ml/min. Chromatographic separation was achieved on two reversed-phase C₁₈ Hypersil columns (Hewlett-Packard) placed in series (5 μ m particle size, 100 mm×4.6 mm I D., followed by a 3 μ m particle size, 60 mm×4.6 mm I.D.). An RP-8 Spheri-5 MPLC guard cartridge (5 μ m particle size, 3 cm×4.6 mm I.D.) from Brownlee Labs. (Santa Clara, CA, U.S A) was used. Guard and analytical columns were maintained at 45°C.

The isocratic mobile phase consisted of acetonitrile-buffer (26 74, v/v). The buffer contained 0.004 M triethylamine, 0.0036 M sodium acetate and 0.0001 M dodecanesulfonate sodium The final solution was adjusted to pH 5.0 with concentrated orthophosphoric acid and filtered through a 0 45- μ m nylon filter from Schott-Duran (Gottingen, F.R.G.).

Assay procedure

An aliquot of monkey plasma (either 100 μ l of control plasma and 50 μ l of an aqueous I standard or 100 μ l of sample plasma and an equal volume of HPLC-grade water) and II solution (100 μ l) were added together with 0.5 ml of an ion-pair solution [5 mg of 1-heptanesulfonate sodium salt in 500 ml of 0.5% (v/v) acetic acid] to a 75 mm \times 12 mm disposable glass culture tube. The tubes were mixed and allowed to remain at room temperature (22–27°C) during column preconditioning.

Solid-phase columns were preconditioned using five 1-ml volumes of methanol followed by five 1-ml volumes of HPLC-grade water. The plasma solution was passed through the cartridge using a gentle vacuum of 23 7 MPa. Each cartridge was rinsed sequentially with the following three rinses 1 ml of 0.5%(v/v) acetic acid, 0.5 ml of 0.05 M sodium acetate and two 100- μ l rinses of acetonitrile-0.025 M sodium acetate (20 80, v/v), with 1 μ l triethylamine per ml of solution I and II were eluted from the cartridge into a clean collecting tube using acetonitrile-0.025 M sodium acetate (50 50, v/v), with 2 μ l of triethylamine per ml of solution. Three 100- μ l aliquots of the elution solution were passed through each cartridge for a total elution volume of $300 \ \mu$ l. Samples were evaporated to dryness in a 40° C water bath under a gentle stream of nitrogen A volume of 50 μ l of methanol, 225 μ l of HPLC-grade water and 25 μ of a 0.5 M sodium acetate solution (pH 4.0 with sulfuric acid) were used to reconstitute each sample, followed by mixing An aliquot of 275 μ l was injected into the chromatographic system. All samples and standards were randomized prior to injection. To obtain the concentration of I in an unknown sample, the I/II peak-area ratio (peak area of I/peak area of II) of the nine extracted standards was used to construct a standard curve; the concentration of I was calculated by using the calibration equation obtained using weighted (weight = $1/concentration^2$) least-squares linear regression analysis [6,7].

Validation procedure

System precision and linearity of I in monkey plasma was validated over the concentration range $0.05-3.0 \,\mu$ g/ml by analyzing nine calibration standards of

I in triplicate on three separate days. Accuracy of the assay was determined by analyzing quality control samples at three concentrations in triplicate on each of the three days Percent recovery of I and II was determined at three concentrations and one concentration, respectively.

RESULTS AND DISCUSSION

Chromatography and selectivity

Fig. 2A and B illustrate two chromatograms from a single cynomolgus monkey: one from a pre-dose sample and the other from a 1-h post-dose sample following oral dosing with I at 50 mg/kg body weight. The concentration of I

Fig. 2 Chromatograms of (A) extracted plasma with internal standard (II) from a pre-dose monkey sample, (B) extracted plasma with internal standard (II) from the same monkey 1 h following a 50 mg/kg oral dose of I, (C) extracted monkey plasma calibration standard containing 1 0 μ g/ml I and II and (D) extracted monkey plasma calibration standard containing 1 0 μ g/ml I, II, and spiked with 0 5 μ g/ml III

Fig 3 UV photo-diode array plots of (A) I and (B) II at upslope, apex and downslope from aqueous standard (-), monkey plasma calibration standard (-) and monkey plasma sample (--)

was 0 37 μ g/ml The retention time of I was 9 8 min and that of the internal standard 14 1 min under the conditions described Fig 2C represents a 1 0 μ g/ml monkey plasma calibration standard with internal standard (II) Separation of I from metabolite 9 (III), a closely eluting compound of similar structure found in monkeys dosed with I, was achieved using this method (Figs 1 and 2D).

System selectivity was confirmed by multiple-wavelength rapid-scan photodiode array detection of the upslope, apex and downslope of the chromatographic peaks of I and II (Fig 3) No extraneous peaks from extracted monkey samples interfered with the quantitation of I or II at 315 nm

Precision and accuracy of the calibration curve

System precision and linearity were validated in cynomolgus monkey plasma by analyzing nine calibration standards containing 0.05–3 0 μ g/ml I in triplicate over a three-day period Reproducibility of peak-area ratios over the calibration range, expressed as coefficient of variation (C V), ranged from 2 5 to 13 0% Precision of calibration standards, expressed as C V., ranged from 2 8 to 10 4% with a relative error (R E.) of within $\pm 5.3\%$ (Table I)

Precision and accuracy of the method

Assay precision and accuracy were determined by analyzing three quality control pools in triplicate on three separate days Assay precision was $\pm 8.4\%$ based on C V values of 8.4, 4.7 and 3.5% for controls containing 0.25, 1.5 and 2.5 μ g/ml I, respectively. The accuracy of the method was $\pm 2.8\%$, with R E. values of 2.0, 0.67 and 2.8% for the same three control pools (Table II)

TABLE I

Concentration added (µg/ml)	Mean peak-area ratıo	C V (%)	Mean concentration found (µg/ml)	C V (%)	Relative error (%)
0 05	0 044	13 0	0 050	10 4	0.0
0 075	0.075	10 7	0 079	80	$5\ 3$
0 125	0 116	74	0 119	47	-48
0 25	0 249	61	0 247	$5\ 0$	-12
05	0 521	29	0 510	38	$2 \ 0$
10	1 00	25	0 976	$3\ 1$	-24
15	1.56	48	1.52	$5\ 2$	13
2 5	2.67	25	260	2.8	4 0
30	3 05	$5\ 2$	2 95	38	-17

MEAN PEAK-AREA RATIOS AND CALCULATED CONCENTRATIONS OF CALIBRATION STANDARDS OF I IN CYNOMOLGUS MONKEY PLASMA (n=9)

TABLE II

MEAN CONCENTRATIONS OF QUALITY CONTROLS OF I IN CYNOMOLGUS MONKEY PLASMA

Concentration added (μ g/ml)	n	Mean concentration found $(\mu g/ml)$	C V (%)	Relative error (%)
0 25	9	0 245	84	-20
15	9	1 51	47	0 67
2 5	8	$2\ 57$	35	28

Fig. 4. Plasma concentration versus time profile obtained following oral administration of 20 mg/kg I to a cynomolgus monkey

Plasma recovery

The recovery of I from cynomolgus plasma was determined at 0.125, 0.25 and 2.5 μ g/ml. The mean recovery of eight or nine samples at each concentration was 73, 71 and 75% with C.V. values of 12.9, 8.6 and 10.0%, respectively The recovery of II at a concentration of 1.0 μ g/ml from 27 standards was 68% with a C V of 8.2%

Animals and drug administration

Plasma samples obtained from cynomolgus monkeys following oral administration of I were processed as described. A plasma concentration versus time curve for a cynomolgus monkey administered an oral dose of 20 mg/kg I is illustrated in Fig. 4.

CONCLUSION

A precise, accurate, selective and sensitive liquid chromatographic method for the determination of I in monkey plasma has been developed. More than 600 monkey plasma samples from toxicological support and pharmacokinetic studies have been processed using this method. Separation of I from a potential interfering metabolite (III) has been achieved The method is linear over the concentration range of 0.05–3.0 μ g/ml and the detection limit is 0.05 μ g/ml at a signal-to-noise ratio of 4.

REFERENCES

- 1 H A DeWald, N W Beeson, F M Hershenson, L D Wise, D A Downs, T G Heffner, L L Coughenour and T A Pugsley, J Med Chem, 31 (1988) 454
- 2 DA Downs, TG Heffner, DJ Johnston, KL Sledge, AE Williams, and JN Wiley, Soc Neurosci Abstr, 13 (1987) 459
- 3 T G Heffner, D A Downs, F W Ninteman, J N Wiley, H A DeWald, L D Wise and F M Hershenson, Soc Neurosci Abstr, 13 (1987) 459
- 4 T A Pugsley, L L Coughenour, S L Myers, Y H Shih, G G Courtland, W Bergoff and S F Stewart, Soc Neurosci Abstr, 13 (1987) 460
- 5 L T Meltzer, C L Christoffersen, A S Freeman and L A Chiodo, Soc Neurosci Abstr , 13 (1987) 459
- 6 P R Bevington, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York, 1969, p 105
- 7 E L Johnson, D L Reynolds, D S Wright and L A Pachla, J Chromatogr Sci , 26 (1988) 372